
i = ( 3 / 8 ) C D  (v  1 - -  u2)Iv1 - -  v 2 [plPJ(P22a), 

q ----- (3,'2) N u  k ( T  1 - -  T2)/(p22a~'), 

where C D is the drag coefficient; Nu is the Nusselt number; k is the thermal conductivity of 
the gas; a is the particle radius; and P22 is the density of the particle material. 

Figure 5 shows the parameters of the two-phase mixture to the right of the contact dis- 
continuity, which is found by perturbation theory [6] for v = 1 and 2p22a2/(9D) = 0.01, where 

is the gas viscosity. 

LITERATURE CITED 

I. S. S. Grigoryan, T. V. Marchenko, and Yu. L. Yakimov, "Transient motions of gas in shock 
tubes of variable cross section," Prikl. Mekh. Tekh. Fiz., No. 4 (1961). 

2. V. P. Korobeinikov, V. V. Markov, and I. S. Men'shov, "Problem of a strong explosion in 
a dust-filled gas," Transactions of the V. A. Steklov Mathematics Institute [in Russian], 
Vol. 163 (1984). 

3. L. I. Sedov, Similarity and Dimensional Methods in Mechanics [in Russian], Nauka (1987). 
4. L. V. Shidlovskaya, "Motion of gas in shock tubes of variable cross section and its appli- 

cation to solar wind perturbations," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 
(1976). 

5. N. S. Zakharov and V. P. Korobeinikov, "Self-similar motion of gas during the local admis- 
sion of mass and energy to a combustible mixture," Izv. Akad. Nauk SSSR, Mekh. Zhidk. 
Gaza, No. 4 (1979). 

6. V. P. Korobeinikov, "Perturbation method in flows of dust-filled gas," Usp. Mat.~ Nauk, 
4__0, No. 4(24), (1985). 

MODELING TRANSIENT TURBULENT AXISYMMETRIC FLOW IN NARROW GAPS 

BETWEEN CONTOURED ROTATING SURFACES 

V. K. Nikul'chikov, N. D. Sosnovskii, and A. V. Shvab UDC 532.517.4 

Rotating channels of various shapes are widely used in modern power plants, turbines, 
and chemical manufacturing equipment. In particular, efficient air-centrifuge classifiers, 
which are used in the powder technology, and the express analyzers which are based on them 
[i, 2] make it possible to fractionate powdered materials by particle dimension at a high 
rate and to determine their granulometric composition. The working zone of these devices 
is a narrow gap between rotating contoured surfaces, in which the parts flow and are sepa- 
rated by size by resistive and centrifugal forces. A diagram of the separation zone is pre- 
sented in Fig. i. 

Here the torsional turbulent flow of an incompressible gas is studied, based on the 
parabolic equations, obtained from the"narrow channel" approximation. The unsynmnetric 
channel is studied when one of the limiting surfaces is flat and perpendicular to the axis 
of rotation, and the second is contoured such that the gap width varies according to H = 
H(R), where R is the radius. The transient nature of the flow is caused by the forced change 
of the rotation rate of the walls ~ or the flow Q through the gap. The problem has been 
examined in the steady-state formulation [3] based on the two-parameter Launder-Jones model 
[4, 5]. 

The operational efficiency of these devices can be further enhanced by establishing 
their fundamental physical characteristics, which are based on models which adequately de- 
scribe the hydrodynamics of transient torsional axisymmetric flows which are directed both 
toward the axis of rotation (Q < O, Fig. i) and toward the periphery (Q > 0). 

Tomsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 94- 
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Fig. i 

i. In order to make the equations of motion of the fluid in the gap dimensionless, the 
radial scale is taken as the input radius R0, and the axial scale is taken as the input gap 
width H0, and the period To for changing fl or Q is taken as the scale for the time T. The 
velocity scale is t a k e n  as the quantity 

t I%% I U o =~oHo ~ J" U(R o, Z, T )dZdT ,  
0 0 

where U(R0, Z, T) is the radial velocity component at the input to the gap. 

The Launder-Jones model ~:or transport of the kinetic energy of pulsations K and the dis- 
sipation rate for the turbulence energy E is used in order to close the averaged Reynolds 
equations [4]. The scalefor K is taken as 

T o Ho 

t ! ' ! K ( R o ,  Z ,T)  dZdT. K o = 

The scale for the dissipation of the turbulence energy can be related to the scale for the 
kinetic pulsation energy through the A. N. Kolmogorov relation E0 = cdK03/2/L0, where L0 is 
the linear turbulence scale at the input, and the constant c d = 0.i [6]. 

The equations for ~urbulent transient axisymmetric motion of a fluid in cylindrical 
coordinates are written under the assumption that the relative width of the channel 8 = H0/ 
R0 is small. This assumption made it possible to estimate the order of magnitude of the spe- 
cific terms in the system o~ Reynolds equations and to throw out some of the terms, in anal- 
ogy to the classical method of obtaining the boundary layer equations. Thus, of the viscous 
terms, the term with the second derivative in the axial coordinate has the largest order; by 
comparison the others are of order ~2. The derivatives of the turbulent Reynolds stresses 
remain only with respect to the axial coordinate. Then, considering the Boussinesq formula, 
the dimensional equation for momentum transport in the radial direction, for example, has 
the form 

0u ou wa~ v ~ ap t a [  a.]  
S h b y + U a T + ~ a z  r + ~ = ~ - f f ~  ( i + v t ) ~  z . 

The e q u a t i o n s  f o r  t h e  r o t a t i o n a l  v e l o c i t y  componen t ,  t h e  t r a n s p o r t  o f  t h e  k i n e t i c  e n e r g y  
f o r  t u r b u l e n t  p u l s a t i o n ,  and t h e  d i s s i p a t i o n  r a t e  o f  t h e  t u r b u l e n c e  e n e r g y  a r e  t r a n s f o r m e d  
in  t h e  same way. I n s t e a d  o f  t h e  e q u a t i o n  f o r  t h e  a x i a l  componen t ,  we o b t a i n  t h e  s t a n d a r d  
c o n d i t i o n  a p / a z  = 0. 

I n  o r d e r  t o  s i m p l i f y  t h e  n u m e r i c a l  i n t e g r a t i o n  o f  t h e  e q u a t i o n s ,  t h e  a x i a l  c o o r d i n a t e  
z = Z/H0 s h o u l d  be r e p l a c e d  by z = ~ h ( r ) ,  which  r e d u c e s  t h e  r e g i o n  w i t h  t h e  c u r v i l i n e a r  
bounda ry  t o  a p l a n e - p a r a l l e l  c h a n n e l  where  h = h ( r )  = H(R)/H0 i s  t h e  d i m e n s i o n l e s s  e q u a t i o n  
o f  t h e  p r o f i l e  o f  t h e  l i m i t i n g  s u r f a c e .  I n  o r d e r  t o  do t h e  c a l c u l a t i o n s  on a u n i f o r m  g r i d ,  
a new c o o r d i n a t e  s i s  i n t r o d u c e d ,  which  i s  r e l a t e d  t o  ~ by t h e  r e l a t i o n s h i p  ~ = g ( s ) ,  where 
g ( s )  i s  a s p e c i a l l y  s e l e c t e d  f u n c t i o n ,  f o r  which  a c o n s t a n t  s t e p  in  s c o r r e s p o n d s  t o  a de-  
c r e a s i n g  s t e p  i n  ~ a t  t h e  w a l l .  A f t e r  a d o u b l e  t r a n s f o r m a t i o n  o f  c o o r d i n a t e s ,  t h e  e q u a t i o n s  
f o r  f l u i d  f l o w ,  c o n t i n u i t y ,  and t h e  k--E t u r b u l e n c e  model  a r e  o b t a i n e d  in  f i n a l  fo rm:  

S h - ~  + u - ~  - -  u- 
a.  v2 ap = l a ( l + v t  au )  ( i . i )  
as r -}- ar  ~g'h2R""~e as g '  as ; 

236 



t O(ru) gh' Ou t 0vJ = O; 
r or g'h o, + ~g'---~ o'-T 

Sh ~-  + u-y7-- u g, + g'h ~Fh ~s -~- ~Jg'h2ite #s " - -  Os 

~t [[Ou~2A..[Oo\~] DiTu 2 [Ok 1/2 
+ [3g'*hYRetu * [k '~-]  - -  k-~') J +  - ' ~  e )2; ~g,2h'ZRe ~--~- 

S h - T / + u - g  7 -  u = g'h ~g'h] Os ~g'h'ZRe Os - ~ + 

4 .~jg,.,hZReTu. z [\ Os j + \  Os] J k ~3 k + 

- . ,  
+ ~g2h4Re:DiTua [0s  ~ l O s ]  + " - ~ \ ~ s j  J ) "  

(1.2) 

(1.3) 

(1.4) 

( 1 . 5 )  

The dimensionless variables and unknown functions in (1.1)-(1.5) are reduced by the ratios: 
t = T/T 0 , r = R/R0, u = U/U0, v = V/U0, w = W/U 0, p = P/pU02, v t = VT/V, k = K/K0, and ~ = 
E/E 0. Here Z is the axial coordinate: U, V, and W are the radial, rotational, and axial 
components of the fluid velocity; P is the pressure; v and ~T are the coefficients of molec- 
ular and turbulent viscosity; g' = dg/ds; and h' = dh/dr. 

The model constants and the function for the relative coefficient of turbulent viscosity 
are chosen according to [5]: ~t = c~Rek, where cD = 0.09"exp[-3.4/(l + 0.02 Rek)2]; Re k = 
Re'Tu'k2/(Di'e); cel= 1.44; cg 2 1.92"[1 - 0.3"exp (-Rek2)]; and o = 1.3. 

The boundary conditions are given by the initial and input distribution of the velocity 
components and the turbulence characteristics, the adhesion of the fluid to the rotating sur- 
faces, the impermeability of the surfaces, and the degeneration of turbulence at the walls: 

t = O: u, v, k,  e(r,  s, t) = u~, v~, kH, e~(r, ~ ;  ( 1 . 6 )  

r = t :  u, v, k, e(r, s, t) = u,, vB, ks, eB(s, t); ( 1 . 7 )  

s = O, s = t:  u, w, k, e(r, s, t) = O, v(r, s, t) = Ro-~ro(t) .  ( 1 . 8 )  

Because the axial component is found from the first-order continuity equation, one cf the im- 
permeability conditions (1.8) for w is redundant. It can be used to determine the pressure 
gradient. However, it is more convenient to calculate 8p/Sr from the flow conservation 
equation, which results from this condition. Therefore, one of the boundary conditions (1.8) 
for w is replaced by an integral equation for conserving the flow over the radius 

1 

rh S g'uds = q (t). ( i. 9 ) 
0 

To To I 
Here ~ = Q/Qo; Qo---- I QdT;q = O/Oo; Qo =T~o OdT . We also note that the input distribution 

0 

of the rotational velocity (1.7) can be represented as 

U, t) = V o  = --o7 T o  

Here 
To 

v~ (s, t) = V~/Vo; V ~ =  V(Bo, Z, T); Vo= t % offV dZdr. 
O o  

T h u s ,  t h e  t r a n s i e n t  f l o w  i n  c o n t o u r e d  r o t a t i o n  c h a n n e l s  i s  c h a r a c t e r i z e d  by  t h e  f o l l o w -  
i n g  similarity criteria, which follow from Eqs. (1.1)-(1.5) and the boundary conditions (]..6)- 
(1.9): Sh = R0/UoT 0 is the Strouhal number; Re = UoH0/v is the Reynolds number; Re = U0/ 
~0R0 and Rof = U0/V 0 are the Rossby numbers, which represent the degree of torsion of the 
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solid boundaries and the fluid, respectively; and g and h = h(r) are the geometric criteria. 
The turbulence is characterized by the criteria Tu = v~Tu 0 and Di = cdH0/L 0. 

2. The transient equations of the averaged motion and the k-e model of turbulence are 
nonlinear parabolic equations, which can be represented in the general form 

Sh --~/- + a - ~  + b = c - - ~  d + e ,  (2.1) 

where the coefficients a, b, c, d, and e depend on the coordinates, time, and the unknown 
functions f. The system of equations is solved by using a two-layer implicit difference 
method [7] for a second-order approximation in s and a first-order approximation in r and t, 
which for Eq. (2.1) has the form 

f m + l  __ f m ~ m + l  / r n + l  ,~ m + l  __ / m + l  
m + l  : i , j + l  - -  - i , j  A m + l  J i + l , j + l  " / - - l , j + l  Sh "i,j+l "i.j+l + a~,~+~ + wi,j+l = 

At Ar 2AS 

Ci,j+l i+l/2' j+lk~'i+l ' j+l i'j+l]--~i-1/2'j+lAs 2 \ ~ , j + l - -  i - - t , j+l]  "Jc e i , j+ l .  
( 2 . 2 )  

Here At, Ar, and As are the steps in time and along the radial and transverse coordinates, 
and the indices m, i, and j correspond to the directions t, s, and r. 

The continuity equation (1.3) is approximated in the form 

/ ~+l • ~1 +u~ +l~ g~+I/2 rS+lkUi+l, j+l i u i , j , 1 ) _ _ r j  ( m + l  " m + l  _ _ u m + 1  U / + I , )  ,3 ] h]+l U / + l , j + l  i , j + l  

2rj+lAr g~+l/z hj+~ As + ( 2 . 3 )  
m + l  , m + l  

| wi+l , j+t  - -  ~ i j + l  + O. 
~g~+ ]/2 hj+ t As 

The system of difference equations (2.2) and (2.3) with difference analogs of the bound- 
ary conditions (1.6)-(1.9) is solved as follows. Initially, in the "piecewise stationary" 
method, conditions are held fixed to find the stationary field of the velocity and the turbu- 
lence characteristics, which corresponds to the initial condition (1.6). Then the solution 
is iterated on the (m + l)-th layer in time using a trial-and-error method on the transverse 
coordinate s. The resultant distribution is compared with the previous one on the m-th lay- 
er. If their difference exceeds a previously specified small number, even at one point in 
space, the values of the unknown functions at the (m + l)-th layer are assumed the m-th lay- 
er, after which the iteration is repeated again, until the convergence criteria are satis- 
fied at all points. The resultant stationary field for the initial values of the flow pa- 
rameters serve as the initial condition for the transient problem. It is solved by the same 
method of (2.2) and (2.3); however the convergence of the iterations is verified, not between 
the (m + l)-th and m-th layers in time, but between the preceding and following iterations 
on the (j + l)-th layer along the radius of the (m + l)-th layer in time. When the iteration 
convergence criteria are satisfied for all values j on the (m + l)-th layer, we go on to cal- 
culate the unknown quantities at the following moment of time. 

The pressure gradient 8p/Sr, which enters Eq. (i.i), is determined from the integral 
condition (1.9) for conversing flow along the radius, which uses the method detailed in [7]. 
Its essence is that the solution of the difference equation for ui,j+1 m+1 can be written as 

o o 

ui,j+1 m+1 = ui,j+1 m+1 + ui,j+im+1(-Sp/~r)j+1 m+1 in view of its linearity, where ui, j+1 m+1 is 

the solution which formally satisfies ~p/Sr = 0 and ui,j+l m+1 is the solution of the differ- 

ence equation with the right side equal to unity. 

3. The solution method and the possibility of applying the k-e model to this type of 
flow was verified by using a test calculation in a plane-parallel channel h(r) = i for the 
flow parameters in [8] with stationary fluid flow from the rotation axis to the periphery. 
The lack of experimental data in the literature made it impossible to test transient flow. 
However, the agreement of velocity fields computed with the stationary equations [3] and 
with the piecewise stationary method is practical evidence that the method is also correct 
for solving a transient problem. Due to symmetry, the calculation was done for the half 
height of a plane-parallel channel with 51 nodes in the grid for the transverse coordinate 
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and an axial scale of H0/2. The function which controls the density of the grid had the form 
g(s) = sin ~s/2. The zone width for the last zone at the wall was AS = 4"10 -4 , which guaran- 
teed at least i0 points in the viscous sublayer. 

The rotational and radial velocity components and the pressure are compared with ex- 
perimental data [8] in Fig. 2. As with the authors' experiments, it was found that the dis- 
tributions of the radial component, ratioed to the average flow velocity U a = Q/2~RH, and the 
rotational component, ratioed to the local linear velocity at the boundaries ~R, were close 
to similar ones in Fig. 2a for identical parameters Re I = Re/r and Re 2 = r'Re/Ro (Re I = 1602; 
Re 2 = 3265; Ro Tu = 0.i; Di = 2; ~ = 0.085; curves 1 and 4 and the circles correspond to a 
radius r = 1.71; 2 and 5 and the triangles to r = 2.43; and 3 and 6 and the squares to r = 
2.71). Calculated values agree well with experimental points [8] in Fig. 2b (~ = 0.057; Di = 
2; for curve i: Re = 1780, Ro = 1.37, Tu = 0.07; 2: Re = 3990, Ro = 3.07, and Tu = 0.03). 

The satisfactory agreement of the calculated and experimental distributions of the fluid 
velocity components and of the pressure indicates the validity of the k-e model for examining 
the class of rotational flows. 

4. In conducting numerical calculations of the transient turbulent flow from the pe- 
riphery to the axis of rotation in contoured channels, a uniform grid was used with 51 nodes 
in the transverse coordinate and 26 nodes along the radius, including the boundaries. The 
calculation was done to a radius r = 0.5. The time step was At = 0.001-0.01. The system 
parameters were varied in time, both periodically as lqI = 1 + A sin 2vt (IA[ < 1 is the am- 
plitude of the oscillations) and linearly increasing or decreasing in time ~ = B + 2(1 - B)t 
(0 < B < 2 is the initial value of the parameter). The velocity components of the fluid and 
the turbulence characteristics were assumed uniform in the axial coordinate at the entrance 
to the channel. 

Figure 3 shows the velocity components of the fluid at various times for a pulsating 
flow given by q = -(i + 0.5 sin 2zt), and a constant rotation rate at the boundary ~ = i. 
The other parameters are as follows: Re = 1050, Ro = 0.5, Rof = 0.5, Sh = 12.5, ~ = 0.i, 
Tu = 0.2, and Di = 2. The equation of the channel, which widens toward the axis of rotation, 
has the form h = 3 - 2r. Curves 1-7 in Fig. 3a correspond to the radial velocity component 
of the fluid at radius r = 0.5 at times 0, 0.2, 0.4, 0.5, 0.6, 0.8, and I. The profile of 
the radial velocity component shows the most deformation at minimum values of the flow param- 
eter lql" The asymmetry of the curves appears basically in the region next to the wall, 
where the velocity peaks higher at the upper contoured surface in most cases than on the 
lower disk. The effect of the transient flow can be seen by comparing curves i, 4, and 7 
for the same value of the flow q. Curve i corresponds to the stationary sOluti0n at time~ 
t = o; 4 and 7 to the decaying and growing sections of the sinusoid. The most deformation 
of the curve of the radial velocity is observed for increasing flow; the least for decaying 
lql, and the stationary curve lies in the middle. However, the effect of the transience 
shows up markedly for Sh > i. At lower Strouhal numbers the velocity curves practically co- 
incide. These regimes can be considered quasistationary. The stationary problem can be 
solved for them at each required moment in time, which is much simpler. 

The distributions of the rotational velocity component at various times for a varying 
flow differ little from the stationary distributions. They converge to a single curve on 
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the graph (Fig. 3b, lines 1 and 2 at r = 0.5 and 0.7). It can be seen that, for a specified 
uniform velocity profile at the inlet, the uniformity is maintained at the inertial core 
which occupies a significant fraction of the gap all the way to r = 0.5. The rotational ve- 
locity component in the inertial flow core develops along the radius as a vortex-sink combi- 
nation. Its level has a significant effect on the distribution of the radial velocity com- 
ponent throughout the cross section. Thus, at the mean and initial radii, the profile of 
the radial velocity component has the usual form (curve 8 at r = 0.7 at t = 0, Fig. 3a). At 
subsequent radii, a so-called Eckman boundary layer occurs, due to the nonuniform, increasing 
distribution of the rotational component across the width of the channel. The flow increases 
in this layer compared to the core and greatly exceeds it at r = 0.5. That is, the deforma- 
tion of the profile of the radial velocity component increases (for example, curve i in Fig. 
3a). 

The distributions of the axial velocity component at radii r = 0.5 and 0.7 are shown in 
Fig. 3b (curves 3 and 4, respectively). It can be seen that the velocity of the transverse 
flow increases near the axis of rotation at the upper contoured surface. The intensity of 
the turbulence in most cases decreases deep within the channel compared to the initial value 
or maintains roughly the same value along the radius. 

Figure 4 illustrates the development of the curves of the radial and rotational compo- 
nents of the fluid velocity along the radius and in time in a channel which widens toward 
the axis of rotation as h = 3 - 2r according to the equation lql = 1.5 - t and m = 0.5 + t. 
That is, the fluid flow decreases and the rotation rate of the walls increases. Here Sh = 
0.01, and the other physical and geometric parameters are the same as in Fig. 3. The solid 
curves show the velocity at time t = 0, and the dashed lines at time t = 0.9. From the 
curves it can be seen that the deformation of the curve of the radial velocity component 
approaches critical values even at r = 0.5, due to the increase in the centrifugal force 
with time-and the drop in the flow, and then increasing flows start, which cannot be calcu- 
lated within the framework of the boundary-layer model. 

As the investigation has shown, the effect of the criteria Ro and Rof on the flow is 
determined by the interaction of the forces of flow inertia and centrifugal factors. When 
these criteria grow together while others are fixed, the longitudinal inertia and the pro- 
file of the radial component tend to retain their shapes. As they decrease, centrifugal ef- 
fects increase, and the profile of the radial velocity component undergoes deformation. 
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SEDIMENTATION OF A CLOUD OF A BIDISPERSED AEROSOL ONTO A FLAT 

HORIZONTAL SURFACE 

G. M. Makhviladze, D. V. Serov, and S. E. Yakush UDC 532.529 

A characteristic feature of the motion of a cloud of monodispersed particles i:n the 
open under the influence of gravity is the clear appearance of collective effects, which re- 
sult from the hydrodynamic interaction of the falling particles through a gaseous carrier. 
Depending on the degree of this interaction, it is convenient to distinguish two sedimenta- 
tion regimes [i, 2]. In the entrainment regime, the particles completely or partially en- 
trap the medium between them; as a result, the falling velocity of an aggregate of parti- 
cles exceeds the velocity of a single particle, and the cloud takes on the shape of a bowl 
or a torus. In the filtration regime, the particles settle out practically independent of 
each other, the velocity of the center of mass of the cloud equals the falling velocity of 
a single particle, and the cloud shape changes extremely slowly. The entrainment regime 
occurs if there is a large enough concentration of fine particles in the cloud [2]. As the 
particle dimension increases or their concentration decreases, there is a transition to the 
filtration regime. 

Particles of identical dimensions (monodispersed aerosol) have been examined in theo- 
retical studies [2-5] on the free sedimentation of an aggregate of fine particles under the 
force of gravity. Actually, real aerosol formations usually consist of particles of various 
dimensions. The most extensive situation is the one where particles can be separated into 
two characteristic dimensions (bidispersed aerosol). An example is natural rain clouds, 
which consist of mist and rain drops. 

Here an approach investigate monodispersed aerosols [2] is generalized to the case of 
a bidispersed cloud. It is shown that as this cloud settles out, it either divides into 
two independently moving monodispersed clouds or settles as a single one. The conditions 
are found for which each of these regimes is realized. The dispersion laws of particles on 
the sedimentation surface are also found. 

1. Let a cloud of solid or liquid spherical particles of two types be formed in a 
quiescent gas above a flat horizontal surface at time t = 0. The particles are of the same 
material and differ only in diameter. They start to move downwards due to the force of grav- 
ity and leave the suspending gas behind. The problem is to calculate the transient motion 
of the particles and the gas until all the particles have settled out on the underlying sur- 
face. It is assumed that the dimension of the cloud in one of its horizontal directions is 
much larger than the other, which makes it possible to seek a solution independent of one of 
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